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The problem of the construction and use of extended variational formulations which enable an explicit 

analysis to be made of discontinuous displacement fields for a wide class of problems of the deformation 

theory of plasticity is discussed. Three-dimensional, as well as plane problems with the Mises and 

Schleicher-Moreau criteria are investigated. In the case of a piecewise-continuous discontinuity line it is 

shown that the existence of a saddle point of an extended Lagrangian results in an integral inequality, which 

imposes certain conditions on the trace of the stress tensor on the line of discontinuity. Different arguments 

were used in [l-3] to obtain different versions of this condition for a number of problems of the theory of 

plasticity. When sufficient regularity of the stresses is assumed, then from the condition in question a simple 

algebraic relation follows connecting, at the line of discontinuity, the value of the stress tensor with the 

parameters determining the magnitude and direction of the discontinuity. Examples are given, which show 

that, generally speaking, only some of the stress states lying on the yield surface correspond to 

discontinuous solutions. 

IN A NUMBER of papers (see in particular [4-111) the variational formulation of the problems of 
deformation theory of ideal plasticity have been considered. It is known that these formulations 
have a number of special features. Thus, the problem of stresses consists here of minimizing a 
quadratic functional on a set of statically admissible stress fields satisfying the yield conditions, and 
when the set is non-empty the problem always has a unique solution [4]. The dual of this problem 
will be the problem of minimizing a convex functional on the set of admissible displacement fields. 
Such a variational formulation is found to be suitable, unlike the previous extremal problem without 
constraints, for numerical analysis in the case when the existence of its solution is guaranteed. 
Appropriate examples, however, show that the proposed formulation is mathematically incorrect 
since a discontinuous solution may occur on which the starting functional is not defined [5]. Thus the 
need arises to construct the extended (relaxed) problem which retains the value of the exact lower 
limit, thus making it possible to take into account all limiting elements of the initial formulation. 

Complete variational extensions for the problems of deformation theory with the Mises yield 
criterion were constructed ([5-91; see also the bibliography quoted in these papers). The 
mathematical formulation, however, of the total variational extensions are very abstract. For 
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Variational formulations for discontinuous displacement fields 911 

example, the space of functions of limited deformation on which the extended functional is defined 
in [7-91, consists of summable vector functions for which the strain tensor is the Radon measure. 
Therefore, from the practical point of view it is more convenient to use so-called partial extensions, 
in which the functional is defined on the functions which have first order discontinuities along 
certain surfaces (lines), Partial extensions are simple and can be used efficiently in numerical 
solutions of the problems [12-141. 

The main portion of the present paper deals with constructing the partial extensions for a wide 
class of problems of the deformation theory of plasticity. 

1. The problem of determining the stresses u and displacements u can be reduced, within the 
framework of deformation theory, to solving the system 

uij,j + fi = 0 in Q 

ui = uiO on PI, aijn j = Fi on I?2 (1.1) 

eij 0~) = Aijkrokr + &j, 2eij = ut,j + uj, i 

under the following conditions: 

bj bij - ou) < 0, VT E Mck, G (2) < 0 W) 

Here ~RER~ (k = 2,3) is the region with the boundary P which is Lipshitz-continuous, occupied 
by an elastoplastic body, Aijkl are the components of the elasticity tensor, f, F are the volume and 
surface force vectors, IE is the outer normal to f, F is the set of symmetric tensors of dimension k, 
G: MCk+R1 is a convex function governing the plastic properties of the material, and the 
convention of summation over repeated indices is observed. We will assumed that 

r = PI u rZl PI n r2 = 63 
f E (LB (Q)y, F E (La (rSY9 u” E (@ mk 

Let us introduce into our discussion the Hilbert space 

(1.3) 

r: = {o E Mck: U = {Uij}, UsI E LB (a)) 

where the scalar product is defined as (cr, 7) = \ooijTudY. 
We introduce the sets 

Z, = {o = 2: orj, f E La (S-J)} . 
U = {u: uE (H1 (Q))k, u = u” on P,} 

M =5 {a E 20: orj,~ + fi = 0 in 8, niuij = Fj on P,} 

The set M contains statically admissible stress fields. Let us find the set of tensors satisfying the 
yield condition 

K = {uEX: G(a)dO a.e. in a} 

Then, if the set K rl M is non-empty and u * , 
u* will minimize on Kn M the functional 

u* is a solution of problem (1 . l)-( 1.2)) theastress field 

@ 64 = Q (u,. U) - s n,uijujodr 
ra 

a(u,,u) =+ 
S &jkI"ij(JkI dx 
0 
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It was proved (see e.g. [4]) that if Kn M # 0, then a solution of this problem exists and is unique. 
However, the use of (1.4) to solve specific problems meets with difficulties, since the minimization is 
carried out not over the whole space, but on the set K n M, i.e. on the set of tensors satisfying the 
constraints in the form of equations (the equations of equilibrium and the boundary load conditions) 
and inequalities (the yield conditions). Moreover, a problem arises in constructing the displacement 
field corresponding to the stress field. We note that within the framework of the initial formulation 
such a displacement field need not exist. 

Problem (l.l), (1.2) can also be formulated as the problem of determining the saddle point of the 
Lagrangian 

I (UV U) = (Eij (U) Uij - fiZ+) dZ - U (U 9 U) - FiUidr 

It can be shown that the problem of minimizing the functional (1.4) on K II M is equivalent to the 
problem 

;r$ I&t (09 u) 

and (see [4]) 

so that the first component of the saddle point exists and is identical with u*. Calculating the 
supremum in u on the right-hand side of Eq. (1.5), we arrive at the dual problem which will 
represent the problem of minimizing the convex functional 

on the set II [ 151. For example, if the material is isotropic and G(a) = / uD I* - 2k,* (the Mises 
criterion) where uD is the deviator of the tensor u, / u 1 = (uiiuij)1’2, k, is the yield point, then 

Here ~~ is the strain tensor deviator and k. , k are the elastic constants of the material. 
If the problem 

inf J (u) (1.7) 
UEU 

has a solution u *, then the pair (U * , u*) will be a saddle point l(u, u), and conversely, if f(cr, U) has 
a saddle point its components will be solutions of problems (1.4) and (1.7). 

The variational formulation (1.7) can be used when constructing the solution of the problem 
(1, l), (1.2). It is more suitable, since the minimization is carried out over the whole space U, which 
is particularly important when variational-difference methods are used. Problem (1.7) however, has 
a serious drawback: its solution may not exist. 
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This is due to the fact that J(u) is non-coercive on U and coercive only in a non-reflexive space 
(the corresponding spaces for the functional (1.6) are derived in [5]). These difficulties arose due to 
the possibility of discontinuous solutions occurring on which J(u) is not defined. Therefore, the 
need arises to construct a variational extension of the given class of problems which would bring into 
our discussion all limit functions of the initial set. These problems have been studied recently in 
great detail (see [5-81, where the corresponding abstract extensions were given and an extended 
formulation was obtained in [5] for problems with the Mises yield criterion, in which displacement 
discontinuities are allowed on certain surfaces). It should be noted that complete variational 
extensions have a sufficiently abstract form and their indirect use in solving the problems meets with 
difficulties. At the same time, if in extending the set U we restrict ourselves to functions which can 
have discontinuities only along certain surfaces (or curves in the plane case), we can construct 
explicitly the corresponding extended variational formulations and use them to solve specific 
problems and to construct numerical methods. 

2. We shall consider the problem of determining the saddle point of the Lagrangian I(a, u): 
K x II--+ R1, assuming that condition (1.5) holds and the first component of the saddle point u* 
exists. i.e. 

yp (a) = CD (a*); 0 (a) = in&z (a, u) (2.1) 

We shall construct the Lagrangian I’ (u, u): K x U’ -+ R ’ which must be identical with I(a, u) on 
K x U, retain the formulation (2.1) as the problem for the variable u, and have the property that, if 

(u*, u*) is a saddle point of Z’(u, u), then it can be approximated by the sequence of elements of 
K x U. To do this, we shall consider the Banach space V, such that the set U is imbedded 
continuously and densely everywhere in V, and UC U’ C V. 

We shall require that the following conditions hold: 

lo. 2’ (a, u) = 2 (a, u), vu E u, vu E K 
2”. inf 1’ (u, u) = inf 2 (a, u), Vu E K 

, 

3”. z’ E U’ 3 {ZA:;E U: U, --f U' B VW 

lim 2 (CT, 1.6,) < I' (IS, u’) VU E K n M 
m&ai 

(2.2) 

Conditions (2.2) show that 1’ (a, u) is a continuation of I (a, u) onto K X U’, with the variational 
problem (2.1) retained. 

Assertion 2. When conditions (2.2) hold, the Lagrangian l’(u, u) has the following properties. 

Case 1. If (u*, u *) is a saddle point of I(u, u) on K x U, then (u*, u *) is a saddle point of 1’ (a, u) 
on Kx II’ 

Cu.se2. ;zf: u&$Z’ (a, u) = inf sup 2’ (u, u) = C 
UEU’ OEK 

Case 3. If (u*, u*) is a saddle point of 1’ (u, u) on K X U’, then a sequence {u,} E U exists such 
that u,+ u * in V and 
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lim I (u*, z&l) = I?’ (o*, u*) 
l7l-CC 

Proof From (2.2) it follows that 

(2.3) 

sup inf I’ (a, u) = rEpK inn “1 (a, U) = C 
ocsK UEti’ 

inf sup I’ (a, 24) < inf sup 2 (a, U) = C 
UE U’ (r& K UEC UE:K 

and this yields the first two points of the assertion. Let us assume that (u*, u*) is a saddle point of l’(u, u). 
Then from the last condition of (2.2) it follows that there exists a sequence { (Im} E U such that urn-+ u * in V 
and 

lim I (a*, u,) < 1’ (cl+, u*) = c 
m+oD 

On the other hand 

1 to+, u,) = 1’ (us, ~4~) >, in- 1’ (U*,U) = C 
UEU 

Therefore we have relation (2.5). 
Using the Lagrangian l’(a, u), we can construct the problem 

inf J’ (u); J’ (u) = SUE~KZ (a, u) 
UEU 

(2.4) 

and the problem (2.1) will also be dual to it. From the known properties of saddle points it follows 
that if problem (2.4) has a solution u*, then (u*, u*) will be a saddle point of I’(u, u) on KX U’, 
and conversely, if (u*, u *) is a saddle point of 1’ (a, u), then u * will be a solution of problem (2.4). 

By virtue of the first condition of (2.2) 

J’ (u) = J (u) Vu E U 

z;, J’ (u) = z;, mg 2’ (u, u) = C =z; J (u) (2.5) 

The above inequalities show that the functional J’ (u) constructed in this manner is a continuation 
of J(u) onto a wider set U’, with the exact lower limit of the initial problem retained. It also follows 
from relations (2.5) that any minimizing sequence in problem (1.7) will also be minimizing for (2.4), 
and if the problem (1.7) has a solution, this solution will also be a solution of problem (2.4). 

Assertion 1 shows that the problems for the Lagrangians I(u, u) and l’(u, u) are closely 
connected. The first component of the saddle point exists in both cases and is defined uniquely. The 
second component must satify the conditions 

2 (0, ZP) < I (u*, u*) < I (u*, u), vu CZ u, Va E,K (2.6) 

1’ (a, u*) < 1’ (u*, u*) < I’ (u*, u), vu E U’, vu E K 

If u * E U’ and u * 4 U, then l’(u, u) has a saddle point and the second condition of (2.6) holds. 
At the same time the first condition of (2.6) does not hold, since the Lagrangian [(a, u) is not 
defined on u * . In this sense, there is no displacement field from U corresponding to the stress field 
u* which is a solution of the problem, but there is a displacement field from the wide class U’. The 
latter can be approached as closely and accurately as required by the fields {u,,,}, which are 
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FIG. 1. 

admissible in the initial formulation. This, in fact, means that the extended formulation is simply a 
more correct formulation of the problem, in which the special features, which are present implicitly 
in the initial formulation, now appear in explicit form. 

3. Let us consider the simplest case, when R = CIi U ‘n2, Cl1 fl& = 0 (see Fig. 1) where fii, Cl2 
are open regions whose boundaries XI1 and aln, are Lipshitz continuous and y = aRi n 802. Let us 
write IiS = Ii rl ail,, (i, s = 1, 2) and introduce the sets 

u’ = {u (Z): u (r) = u” (a$ for 5 E Q,, u” (Z) E 17, s = 1, 2) 

K0 = {z E 2,: G (z) \< 0 a.e. in CJ} 

Let V= LP(Q),p>l, Y is the vector of the normal to the surface (line) y, v = u1 - u*, T E KC,. Let 
us write 

[% VI = s YiZijUj dr; R, (u) = su4u [z,, u] 
Y . (3.1) 

We note that since the trace v on the line y belongs to the space H 1'2 and 7 E K. , it follows that the 
above expression is meaningful. Let us define the extended Lagrangian as follows: 

I’ (0, 4 = L, (a, 4 + R, (4 

r, (a* u) = 4 [j 0-Q (4 oi, - %%) &?J - J8 u:F, ar] - a (6 a) 

WeseethatCICU’CV,andif’~‘=u’=u(x),u(x)ECT,thenI’(~,u)=l(n,u)sothatthefirst 
condition of (2.2) holds. To verify the second condition we shall use the inequality 

inf 
UEU’ 

1’ (6, U) < 2: 1 (0, U) = inf [ 1 (eu (24) Uij - ZJ*fi) dX - 1 UJi GT] - a@, a) 
Q rs 

The expression within the square brackets represents a linear functional in u, and its infimum is 
different from - ~0 only when u E M. If on the other hand u E M, then integrating by parts we obtain 

L, (a, u) = Q, (u) - la, VI 
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iuf sup 1.t - u, VI < inf sup [‘t’ - U, V] = 0 
UEU’ SK. uEU TEK, 

sup inf l’t - o, VI > 0 
msK, UEU’ 

then 

inf 1’ (a, u) = @ 0-J) if oEM 

UEU’ -CO otherwise 

To verify the last condition of (2.2) we construct the sequence v,(x) = u2+ cp,(x)(u’ - u2), 
where qrn (x) is a smooth function and 0 s qrn (x) G 1, q,(x) = 1 in i21, vrn (x) = 0 and fhm where 

&I 2m = {z E 52,: dist (x, 6’S&) > h/m, h = const} 

When m+ ~0, we have (P,,,(X)+ x(sZ,) where x is the characteristic function of the set. Then 

urn E u, &I (2) --t u’ (Z))bV, 24’ (5) E U’, u’ (5) = US (x) 

for xER, (S = 1, 2) and 

Z(U, Um)=i IS &ij(US)UijdX- 5 U,"F*drl- 
s=1 P r¶’ 

- (Vm)J{dl-i(U,U) + 1 Eij(Um-UUa)UijdX* 

% % 

where W, = O\R;?,. Integrating by parts, we obtain the following expression for the last term: 

[o, VI - 1 %PiW,f dz 
%I 

The first term is independent of m and the second term tends, by virtue of absolute continuity of 
the Lebesque integral, to zero as m+ ~0. Therefore 

lim 2 (a, u,) = L, (a, 24’) + fu, ul < I’ (a, u’) 
m--cc 

Thus conditions (2.2) hold and hence Assertion 1 holds for 1’ (CT, u). 
Using the Lagrangian 1’ (a, u) we can now construct the extended problem 

inf J’ (u’), J’ (u) = Jy (u) + R, (u) (3.2) 
UeV' 

Jy (u) = sul Lv (a, u), u = r.2 - r.2 

The term Ry(v) represents the “penalty” for the break in the displacement field on the line y, and 
is calculated from (3.1). Here the supremum can be conveniently calculated on the set of tensors T 
continuous in the neighbourhood of y, which form in K,, a set which is dense everywhere. 

If we define in the tensor space MCk the function 
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(3.3) 

which is the support function of the convex set (7: 7E Mck, G(T) SO}, then 

R, (u) = S I (e (u)) ds,. Ze, = viuj + vjui (3.4) 
Y 

By virtue of the properties of support functions, this implies that Ry (v) is a positively 
homogeneous and subadditive function of v. 

Assertion 2. If there exists a saddle point (ti*, u *)E K x lJ’ of the Lagrangian l’(u, u) and 
u * C U”(X) when x ESZ,, u’(x) E U (s = 1,2), then the trace of tensor u* on the line of discontinuity 
of displacements y must satisfy the condition 

(3.5) 
(u = u1 - u”) 

Proof. If (lJ*, u *) is a saddle point, then 

Integrating by parts and taking into account the fact that u* E K n M, we have 

sup IT--u*,~l~ su 
!P 

T - u*, WI], VW E V’ 
?C% rCz * 

Taking the upper limit of the right-hand side of this inequality with respect to the function WE U, we obtain 
(3.5). 

From (3.5) it follows that if G(o*)tO, then e(v) “0, i.e. no di~ntinuities are possible in the 
elastic region. If G(o*) = 0 and the trace of the tensor a* is a function defined at almost every point 
of y (this will occur, for example, when aii* E W,‘(n), p> l), then at almost every point of y the 
tensor e(v) will have to be directed along the normal to the yield surface G(u) = 0 at the point 
o = u* (for a non-smooth surface e(v) must belong to the corresponding cone of subno~als). Also, 
if G is a differentiable function, then (3.5) will lead to the well-known relation [l] 

&j(v) = hg,j(U*), gij = dG/dfS~j, h 2 0 (3.6) 

The existence of a discontinuity V(X) f 0, x E y is possible only in the case when the following 
system has a solution at the point X: 

v$Uj + vjU4 = g+j (a*), 1 v 1 = 1, G (a*) = 0 (3.7) 

It turns out that in the general case system (3.7) does not have a solution for ah CT* Iying on the 
yield surface. For example, in the problem of the plane stress state with the Mises yield criterion 
there is no solution when 0.5 <~,/a~ <2 (al, CQ are the principal stresses), which corresponds to the 
region of ellipticity [16] of the system of equations in the stresses. In the problem of plane 
deformation with the Mises criterion system (3.7) always has a soIution, and its analysis leads to a 
well-known argument about the possibility of discontinuities occurring along the characteristics. 

If we choose, in the three-dimensional problem with a yield criterion, the axes of a Cartesian 
system of coordinates which coincide with the directions of the principal axes of the tensor u* at the 
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point xE y, then from system (3.7) it follows that only a tangential discontinuity is possible. 
Discontinuous solutions will be possible only when the deviator u* in the given system of 
coordinates is a diagonal tensor all of whose diagonal components are different and take one of the 
following three values: 0, k, , -k, . Six straight lines lying on the surface of the Mises cylinder and 
parallel to its axis correspond to these stress states. 

Analysis of condition (3.7) in the axisymmetric problem with Mises criterion shows that the line of 
discontinuity may approach the free surface of a cylindrical body only at an angle of +45” to the 
generatrix, which agrees with experimental data [17]. 

Note. In the case when an2 = IR, the extended Lagrangian will have the form 

R, (u - uo) = sup S =K, r 

ni?ij ( u,O - u,) dl” 

t 

In this case the term R, can be regarded as the penalty for possible violation of the boundary condition on Ti. 
The results of Sec. 3 can be generalized in a natural way to the case when 

sz = !22, u a, !J . . . u s-2, 

Q, n G?i = 0, rst = aS2, n dS&, rsl = aQ, n rl 

where s E Q, u (x) = LL~ (x), us (x) E (If1 (s2))k, s. t -= 1, 2, . . . N. 

In this case the sum in the expression for L, (a, u) is calculated from 1 to N, and R, is given by the expression 

where the corresponding integral is assumed to be equal to zero if r,, and r,’ is an empty set. 

4. We shall discuss the extended variational formulation which follows from formulas (3.2)-(3.4) 
for some important cases. We will denote by ec and e D the spherical and deviator part of the tensor 
e. We note that e. = Yiei = u,,l- un2 corresponds to the normal component of the vector v. The 
extended functional, defined 
be written in the form 

._ ._ 
on functions which may undergo a discontinuity along the line y, can 

Vu) =i {S 
a=1 n, 

where H, * are governed by 

(H (8 (u’)) -Fiji’) dx - S FiU.is dI’) + $ ‘I’ (e (v)) dr 
rzs Y 

the choice of the yield condition. 

(4-l) 

For a three-dimensional problem with Mises condition H(E) is determined in accordance with 
(1.6) and q(e) = V?k, leD(v Th e argument showing the need to include such a term in the 
energy relationships is given in [ 161, and a strict justification for this fact is given in [5, 61 from the 
positions of variational calculus. (See [12-141 for description of the use of the corresponding 
extended formulation in constructing the variational-difference methods.) 

Let us consider a problem of the plane stress state with Mises yield condition, which can be 
written, for u E MC’, in the form 

a2 1 CP I2 + b2u02 < k*‘, a = l/1/2; b = 1/IGZ a0 = crll + uz2 

Then the extended formulation (4.1) will have the simplest form for an incompressible medium 

(k, = 00). In this case 
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H (8) = 
1 

‘/&t2 (e), if t \<3k,/E 

k, (t (4 - S!‘zk*E), if t >3k,/E 

where t(~) = (2 18 I2 + 3~~)“~ and E is Young’s modulus. When k,< ~0, the function q(e) has the 
form 

Y (e) = k* (2 1 eD I2 + 3e02)“2 

We know that in many problems (such as soil behaviour analysis, the study of porous media, 
etc.), yield criteria which take into account the dependence on the first invariant of the stress tensor 
are used. They are called the Schleicher-Moreau conditions [17,18] 

G (a) = 1 oD I + h (ad < 0, (I E M,? (44 

Here h is a convex function determining the dependence of G(a) on uO. The CoulombMoreau 
criterion [18] is often used; this is a special case of (4.2) when h(ue) = uue- b where a, b are 
constants. 

In this case we have the following expressions for H and ‘I’: 

Y (e) = 
1 
yf”)’ e, > 0 n I eD I\< e,l(W fthenvise 

H (E) = cl (2Eo - c,) + H1 (Eo’, 1 ED I), Eo’ = E. - C, 

C, = b/(64, Cz = bl(3ak,), Cs = [aalp + 2/(9k,)l-’ 

and Hi=Oif e’a>3aleD, otherwise it is given by the following expressions: 

& (8) = 
P 1 ED I” + ko (eo’)‘/27 if E,’ < - 2~ 1 eD 1/(3ak,) 
cs (3a I t5D I - Eo’)2, if a,’ > - 2p I eD 1/(3ak,) 

1. 
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L’vov 

(Received 24 September 1990) 

A method of solving the axisymmetric static problem of thermoelasticity based on the use of generalized 

functions is proposed for a multilayered unbounded solid cylinder free of external loads, through whose 

surface convective heat exchange occurs with a variable heat transfer coefficient. 

1. EQUATIONS WITH DISCONTINUOUS AND SINGULAR COEFFICIENTS OF THE TWO- 

DIMENSIONAL STATIC PROBLEM OF THERMOELASTICITY OF MULTILAYER 

CYLINDERS 

CONSIDER a cylinder of circular transverse cross-section, free from external loads, composed of an 

arbitrary number of concentrically distributed layers with different physical and mechanical 

characteristics. The cylinder is heated by convective heat transfer from the surrounding medium of 

variable temperature. We will assume that the cylinders are in ideal thermomechanical contact with 

each other, and that the heat transfer coefficient is a function of the axial coordinate. 

We will write the physical and mechanical characteristics of a multilayered cylinder as a single 

whole in the form [l] 

( 1, s>o 
P(r)= PI + 2(Pk+~-14JS(r--rr), S(z)= o, zGo 

(1.1) 

tPrikZ. Mat. Mekh. Vol. 55, No. 6, pp. 1035-1040, 1991. 


